
Chapter 11.5

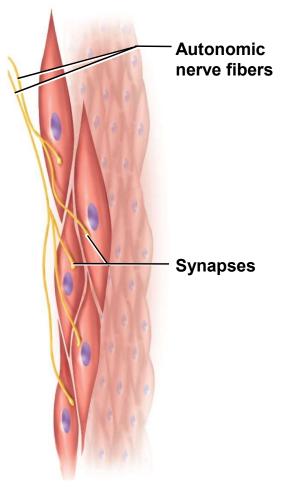
Smooth & Cardiac Muscles

Smooth Muscle

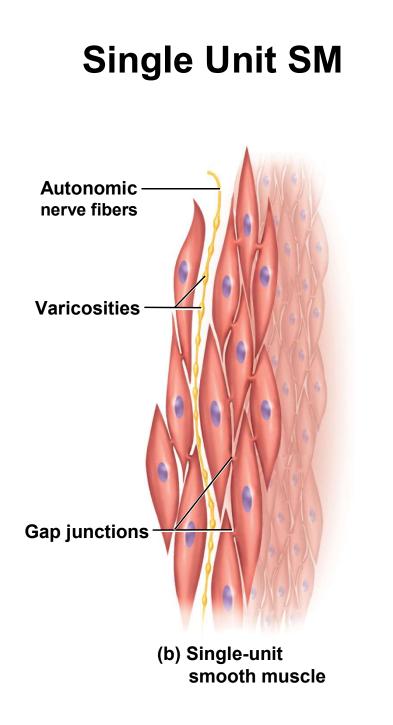
- Some smooth muscles may contract without direct innervation
- Other smooth muscle cells receive nerve stimulation from autonomic nervous system (Note: not somatic motor fibers as in skeletal muscle)
- SM capable of mitosis and hyperplasia
- Injured smooth muscle regenerates well

- composed of myocytes that have a **fusiform shape**
- <u>one nucleus</u>, located near the middle of the cell
- no visible striations
 - reason for the name 'smooth muscle'
 - thick and thin filaments are present, but not aligned with each other
- z discs are absent and replaced by **dense bodies**
 - well ordered array of protein masses in cytoplasm
 - protein plaques on the inner face of the plasma membrane
- cytoplasm contains extensive cytoskeleton of intermediate filament
 - attach to the membrane plaques and dense bodies
 - provide mechanical linkages between the thin myofilaments and the plasma membrane
- sarcoplasmic reticulum is scanty and there are no T tubules
- Ca²⁺ needed for muscle contraction comes from the ECF by way of Ca²⁺ channels in the sarcolemma

- smooth muscle is **involuntary**
- may contract without nervous stimulation // can contract in response to chemical stimuli (hormones) or physical "stretch"
 - hormones, carbon dioxide, low pH, and oxygen deficiency
 - in response to stretch
 - single unit smooth muscle in stomach and intestines has pacemaker cells that set off waves of contraction throughout the entire layer of muscle

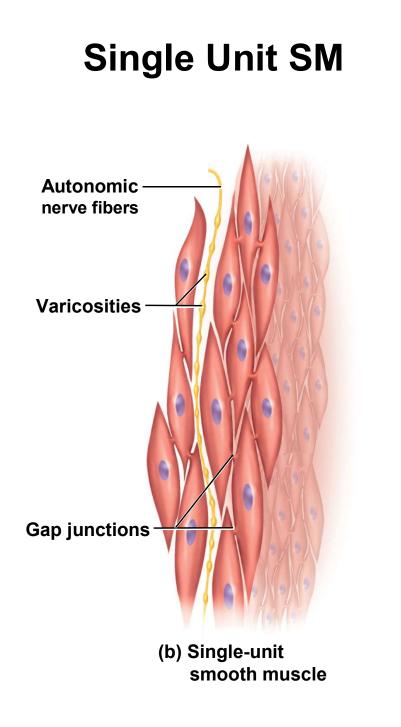

- However, most smooth muscle is innervated by autonomic nerve fibers
 - can trigger and modify contractions
 - stimulate smooth muscle with either acetylcholine or norepinephrine
 - can have <u>contrasting effects</u> /// hormone circulating in blood at same time will relax the smooth muscle of arteries while contract smooth muscles of the bronchioles

2 Types of Smooth Muscle

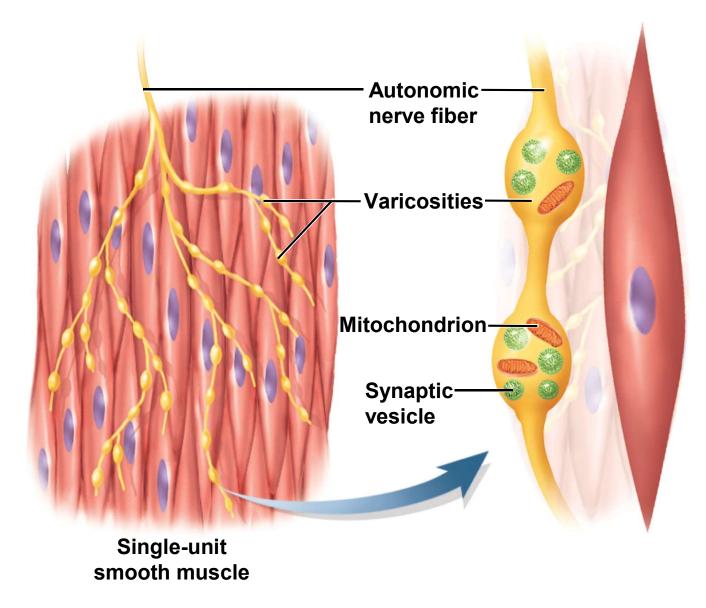


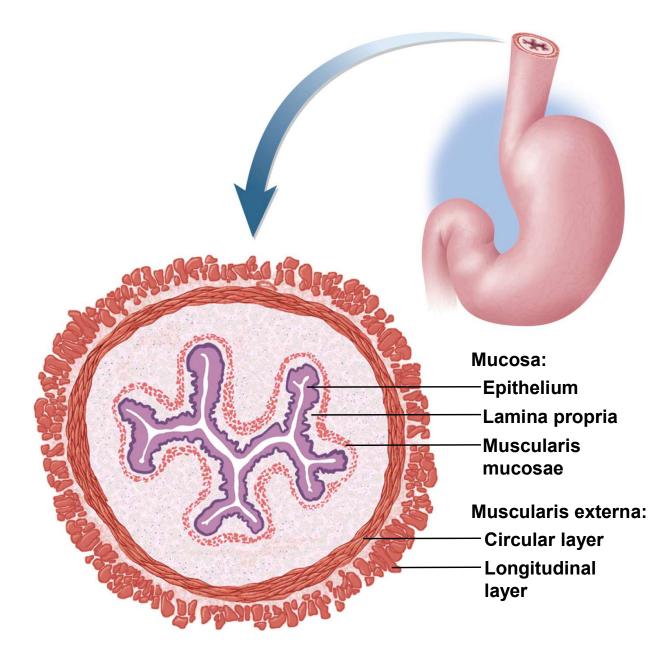
Multiunit smooth muscle

- occurs in some of the largest arteries and pulmonary air passages, in <u>piloerector</u> <u>muscles of hair follicle</u>, and in the iris of the eye
- ANS (automomic nervous system) innervation similar to skeletal muscle
 - terminal branches of a nerve fiber synapse with individual myocytes and form a motor unit
 - each motor unit contracts independently of the others



(a) Multiunit smooth muscle


- single-unit smooth muscle
 - more widespread
 - occurs in most blood vessels, in the digestive, respiratory, urinary, and reproductive tracts
 - also called visceral muscle
 - often in two layers
 - inner circular
 - outer longitudinal
 - myocytes of this cell type are electrically coupled to each other by gap junctions
 - they directly stimulate each other and a large number of <u>cells contract as a single unit</u>



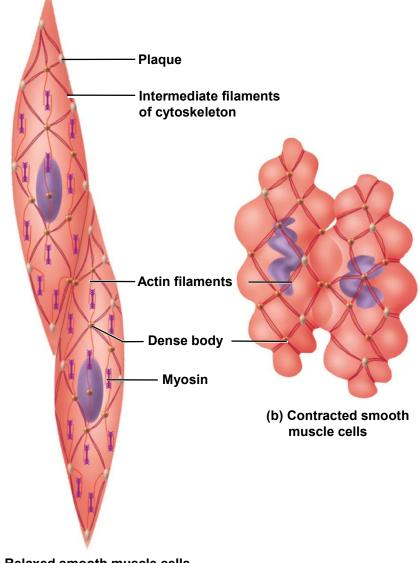
- in single unit smooth, each autonomic nerve fibers has up to 20,000 beadlike swelling called varicosities
 - each contains synaptic vesicles and a few mitochondria
 - nerve fiber passes amid several myocytes and stimulates all of them at once when it releases its neurotransmitter
 - no motor end plates, but receptors scattered throughout the surface
 - diffuse junctions no oneto-one relationship between nerve fiber and myocyte

Stimulation of Smooth Muscle

Layers of Visceral Muscle

Smooth Muscle Contraction and Relaxation

- contraction is triggered by Ca⁺², energized by ATP, and achieved by sliding thin past thick filaments
- contraction begins in response to Ca⁺² that enters the cell from ECF, a little internally from sarcoplasmic reticulum
 - Ca⁺² channels open to allow Ca⁺² to enter cell
 - voltage, ligand, and mechanically-gated (stretching)
- calcium binds to **calmodulin** on thick filaments
 - activates myosin light-chain kinase adds phosphate to regulatory protein on myosin head
 - myosin ATPase
 - hydrolyzing ATP
 - enables myosin <u>similar power and recovery strokes like skeletal</u> <u>muscle</u>
 - <u>thick filaments pull on thin ones thin ones pull on dense bodies and</u> <u>membrane plaques</u>
 - force is transferred to plasma membrane and entire cell shortens
 - puckers and twists like someone wringing out a wet towel


Contraction and Relaxation

- very slow in comparison to skeletal muscle
 - latent period in skeletal 2 msec, smooth muscle 50 100 msec
 - tension peaks at about 500 msec (0.5 sec)
 - declines over a period of 1 2 seconds
 - slows myosin ATPase enzyme and slow pumps that remove Ca⁺²
 - Ca⁺² binds to calmodulin instead of troponin // activates kinases and ATPases that hydrolyze ATP
 - <u>smooth muscle makes most of its ATP aerobically</u>

Contraction and Relaxation

- smooth muscle <u>resistant to fatigue</u>
 - latch-bridge mechanism heads of myosin molecules do not detach from actin immediately
 - do not consume more ATP immediately
 - maintains tetanus tonic contraction (smooth muscle tone)
 - arteries vasomotor tone
 - intestinal tone

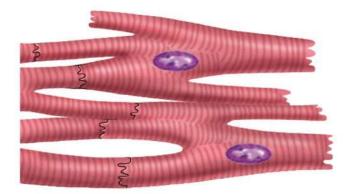
Contraction of Smooth Muscle

(a) Relaxed smooth muscle cells

Stretching Smooth Muscle

- **stretch** can <u>open mechanically-gated calcium</u> <u>channels in the sarcolemma causing contraction</u>
 - peristalsis waves of contraction brought about by food distending the esophagus or feces distending the colon // propels contents along the organ
- **stress-relaxation response** (receptive relaxation)
 - helps hollow organs gradually fill (urinary bladder)
 - when stretched, tissue briefly contracts then relaxes helps prevent emptying while filling

Contraction and Stretching


- smooth muscle contracts forcefully even when greatly stretched
 - allows <u>hollow organs such as the stomach and</u> <u>bladder to fill and then expel their contents</u> <u>efficiently</u>
 - smooth muscle can be anywhere from half to twice its resting length and still contract powerfully
 - <u>skeletal muscle cannot contract forcefully if</u> <u>overstretched</u>

Contraction and Stretching

- three reasons why
 - there are no z discs, so thick filaments cannot butt against them and stop contraction
 - since the thick and thin filaments are not arranged in orderly sarcomeres, stretching does not cause a situation where there is too little overlap for cross-bridges to form
 - the thick filaments of smooth muscle have myosin heads along their entire length, so cross-bridges can form anywhere
- plasticity the ability to adjust its tension to the degree of stretch // a hollow organ such as the bladder can be greatly stretched yet not become flabby when it is empty

- limited to the heart where it functions to pump blood
- required properties of cardiac muscle
 - contraction with regular rhythm
 - muscle cells of each chamber must contract in unison
 - contractions must last long enough to expel blood
 - must work in sleep or wakefulness, with out fail, and without conscious attention
 - must be highly resistant to fatigue

- characteristics of cardiac muscle cells
 - striated like skeletal muscle, but myocytes (cardiocytes) are shorter and thicker
 - each myocyte is joined to several others at the uneven, notched linkages – intercalated discs // appear as thick dark lines in stained tissue sections /// mechanical junctions that keep the myocytes from pulling apart
 - electrical gap junctions allow each myocyte to directly stimulate its neighbors
 - sarcoplasmic reticulum less developed, but <u>T tubules are larger</u> and admit supplemental Ca²⁺ from the extracellular fluid
 - damaged cardiac muscle cells repair by fibrosis /// a little mitosis maybe observed following heart attacks // not in significant amounts to regenerate functional muscle

- can contract without need for nervous stimulation
 - contains a built-in pacemaker that rhythmically sets off a wave of electrical excitation
 - wave travels through the muscle and triggers contraction of heart chambers
 - autorhythmic because of its ability to contract rhythmically and independently
- autonomic nervous system does send nerve fibers to the heart /// can increase or decrease heart rate and contraction strength
- very slow twitches does not exhibit quick twitches like skeletal muscle /// maintains tension for about 200 to 250 msec /// gives the heart time to expel blood

- uses aerobic respiration almost exclusively
 - rich in myoglobin and glycogen
 - has especially large mitochondria // <u>25% of</u> volume of cardiac muscle cell /// 2% of skeletal muscle cell with smaller mitochondria
- very adaptable with respect to fuel used
- very vulnerable to interruptions of oxygen supply
- highly fatigue resistant